Directors' Blog

PhD scholarship on mathematical modelling of te reo Māori

Nau mai ngā hua o te wānanga! Applications are invited for a fully funded PhD scholarship to work on a project on mathematical modelling of te reo Māori (the Māori language).

There have been numerous interventions over the last 40 years to stop the decline of te reo Māori as part of a movement to revitalise the indigenous language of Aotearoa New Zealand. In 2018, the New Zealand Government set a national target of one million speakers of te reo Māori by 2040, and 150,000 Māori using te reo as their primary language. However, there have been no reports in recent history that provide a complete picture of the health of te reo Māori and its revitalisation, so we are in the dark as to our ‘starting point’, let alone our best strategy to reach this goal.

This project will develop and validate a dynamic mathematical model to improve our understanding of the current trajectory of the Māori language in terms of the number of speakers and what impact possible interventions may have on that trajectory. This will help identify what resources and strategies are required to meet government targets and support self-determined community approaches.

We will use this model to test the effect of various interventions, such as making te reo Māori a compulsory part of the school curriculum, prioritising language immersion schooling, and investing in teachers. Our modelling will draw upon expert knowledge in Māori language revitalisation and comparable interventions that have been implemented for other endangered languages, such as Welsh.

Eligibility

This scholarship is only open to current residents of Aotearoa New Zealand and Australia. Students from a diverse range of fields are encouraged to apply. The successful candidate will hold, or expect to complete soon, an honours or masters level qualification, including some advanced-level study of mathematics, statistics, or a closely related subject. A strong interest in te reo Māori and/or language revitalisation is essential, but no formal prior knowledge is required.

Applicants from all backgrounds are actively encouraged to apply. Members of under-represented groups are very welcome, as are students with families. Our research group aims to achieve work-life balance within a productive scientific environment.

Location

The best place for you to be based during your studies is at the University of Canterbury in Christchurch, although there is flexibility on this. You will be jointly supervised by Professor Michael Plank (School of Mathematics and Statistics, University of Canterbury) and Dr Rachael Ka’ai-Mahuta (Te Ipukarea Research Institute, Auckland University of Technology).

You will be part of Te Pūnaha Matatini, the Aotearoa New Zealand Centre of Research Excellence for Complex Systems. Te Pūnaha Matatini brings together different disciplines, ways of thought, methods, and people to define and solve society’s thorny interconnected problems.

Te Pūnaha Matatini has an active whānau group which supports early career researchers, committed to the Te Pūnaha Matatini values of manaakitanga and whakawhanaungatanga, offering supportive tuakana / teina learning environments.

Contact

Informal enquiries are welcome by email:

Financial details

  • Full tuition fees
  • Stipend of NZ$28,500 per year (tax free)

Start date

  • February 2022

How to apply

Send an email expressing your interest, along with a CV, academic record, and list of three potential referees to Michael Plank at michael.plank@canterbury.ac.nz or Rachael Ka’ai-Mahuta at rachael.kaai-mahuta@aut.ac.nz.

Due date

Applications will be considered until the position is filled.

PhD scholarship on Kindness in Science in Aotearoa New Zealand

Ehara tāku toa i te toa takitahi, ēngari he toa takitini
My strength does not come from me alone but from the collective

Applications are invited for a fully-funded PhD studentship to examine the scientific community of Aotearoa New Zealand in the context of the Kindness in Science movement.

In Aotearoa New Zealand, diverse participation in the science community – including the participation of Māori and Pasifika scholars – remains low. The scientific community urgently needs to develop and adopt a culture of inclusion, or kindness, which sustains the robust discourse essential for science and does not come at the expense of the dignity of those who participate. Our hypothesis is that such a culture will not only enhance wellbeing for all members of the science community but will also lead to better science outcomes by enabling much broader participation and diverse knowledges to be considered. This project will explore how marginalisation takes place for many groups, including Indigenous Peoples, as well as practices and contexts that enable and engender participation in science.

With our support, you will learn how to analyse data using a mixed-methods approach to undertake a comparative study grounded in the Kindness in Science movement, which originated in Aotearoa New Zealand. It will build on previous work by Te Pūnaha Matatini on the impact of science funding and the dynamics of scientific citation patterns, and include a documentary source analysis to be conducted in an aligned project.

Eligibility

This scholarship is only open to current residents of New Zealand and Australia. We are happy to consider students from a diverse range of fields including geography, anthropology, and sociology, and a familiarity with mixed methods research is desirable. The successful candidate will hold, or expect to complete soon, an honours or masters degree, or similar, in their disciplinary area. Most importantly, you will enjoy working with data and as part of a collaborative and inclusive team.

Applicants from all countries and backgrounds are actively encouraged to apply. Members of underrepresented groups are very welcome, as are students with families. Our research group aims to achieve work-life balance within a productive and supportive scientific environment.

Location

Ideally you will be based in Auckland at the University of Auckland, although the University of Canterbury in Christchurch may also be an option. You would be jointly supervised by Dr Emma Sharp (University of Auckland), Associate Professor Tammy Steeves (University of Canterbury), Professor Shaun Hendy (University of Auckland), and Dr Leilani Walker (AUT).

The PhD position will be embedded within Te Pūnaha Matatini, the Aotearoa New Zealand Centre of Research Excellence for Complex Systems. Te Pūnaha Matatini brings together ‘many faces’ – different disciplines, ways of thought, methods, and crucially, people – to define, and then solve, society’s thorny interconnected problems.

Te Pūnaha Matatini has an active whānau group which supports early career researchers, committed to the Te Pūnaha Matatini values of manaakitanga and whakawhanaungatanga, offering supportive tuakana / teina learning environments.

Contact

Informal enquiries are welcome by email:

Financial details

  • Full tuition fees
  • Stipend of NZ$28,500 per year (tax free)

Start date

Start date is flexible but would preferably be between February 2022 and June 2022.

How to apply

Send an email expressing your interest, along with a CV, academic record, and list of three potential referees to Emma Sharp at el.sharp@auckland.ac.nz.

Due date

Applications will be considered until the position is filled. Applications received by 31 October 2021 will receive full consideration.

Complexity is at the heart of Te Pūnaha Matatini

Complexity is at the heart of Te Pūnaha Matatini

Photo: New director of Te Pūnaha Matatini, Associate Professor Cilla Wehi (R) with new deputy director Dr Mike O’Sullivan (L).

1 July 2021

The next phase of Te Pūnaha Matatini begins today, as Associate Professor Cilla Wehi takes over as our new director.

Cilla has bold aims to build upon the transdisciplinary community that was created under the leadership of founding director Professor Shaun Hendy. “It’s done really well up until now and I think we want to build on that,” she says.

“Our aim is to reimagine what research looks like, and provide a platform to make intellectual leaps that are important here in Aotearoa New Zealand, but also globally.”

Te Pūnaha Matatini is a transdisciplinary Centre of Research Excellence in complex systems that brings together researchers throughout Aotearoa New Zealand.

New deputy director Dr Mike O’Sullivan agrees that “Te Pūnaha Matatini has built a really great community. The value of that community wasn’t well understood until COVID-19 hit, and then its value became quickly apparent at an international level.”

Shaun’s tenure as inaugural director culminated with Te Pūnaha Matatini receiving the 2020 Prime Minister’s Science Prize for our work developing a series of mathematical models, analysing data and communicating the results to inform the New Zealand Government’s world-leading response to the global COVID-19 pandemic.

The success of this work very publicly validated the emphasis that Te Pūnaha Matatini has placed on values, expertise and communication since our establishment in 2015.

Cilla says that she wants to build upon this foundation to continue to contribute to positive societal change. “We’ve got data analytics to create new knowledge for transformative change and we’ve got a vision of the kind of society that we would like to be part of in the future.”

Researchers in Te Pūnaha Matatini’s community often work in the gaps between disciplines, which is where Cilla says the most exciting ideas often emerge.

“Te Pūnaha Matatini has intellectual curiosity, and we’ve got a suite of tools that can be used to address some of the big challenges that New Zealand faces globally, so we really can push out boundaries.”

Mike is excited about supporting Cilla in her leadership role. “Cilla has clear ideas about the things she wants to do,” says Mike. “But she’s good at listening as well.”

“And she’s not afraid to agitate a little bit.”

 

Photo: Te Pūnaha Matatini Kaumātua Associate Professor Tom Roa.

Another fundamental source of support for Cilla in this leadership role is the wisdom and guidance of Te Pūnaha Matatini Kaumātua, Associate Professor Tom Roa.

“I’ve known Tom a long time,” says Cilla. “He’s the most fantastic person to discuss ideas with because he has really deep insight, and brings a wealth of knowledge from Māori contexts that has relevance and can really help us to see the best path forward.”

Tom shared a kōrero from his iwi Ngatī Maniapoto that underpins Te Pūnaha Matatini’s approach. When the kawau (shag or cormorant) flock for flight, they form an arrow shape, which allows them to collectively punch through headwinds. As leaders tire, those behind them move up to the front.

Cilla explains that “if you align yourselves as a group then you can punch through these difficult problems in a way that you could never do as one person alone. But also, when the leading birds get tired they step back and others come forward. So we’re growing people to step up. This is a group effort, and we are in it together.”

One of the key purposes of Te Pūnaha Matatini is to develop new researchers.

Cilla explains that “it’s become really clear over the last few years how important it is to do not only collaborative research but ethical research. There’s a much stronger focus now on working in partnership with our communities, and on our responsibility to communicate evidence. So we want to train researchers who are collaborative and ethical, and are great at both working with data and working with people.”

“It’s about contributing to future research, but also the future of Aotearoa New Zealand.”

“Complexity is at our heart,” concludes Cilla. “We build community across disciplines to solve complex problems.”

A COVID-19 vaccination model for Aotearoa New Zealand

30 June 2021

Executive summary

  • We use a mathematical model to estimate the effect of New Zealand’s vaccine rollout on the potential spread and health impacts of COVID-19 and the implications for controlling border-related outbreaks.
  • The model can be used to estimate the theoretical population immunity threshold, which represents a point in the vaccination rollout at which we could relax border restrictions with few or no controls in place and see only small occasional outbreaks.
  • While there are significant uncertainties in R0 for new variants, for a variant that would have R0=4.5 with no public health measures (e.g. the Alpha variant), the population immunity threshold is estimated to require 83% of the population to be vaccinated under baseline vaccine effectiveness assumptions. For a variant with R0=6.0 (e.g. the Delta variant), this would need to be 97%.
  • While coverage is below this threshold, relaxing controls completely would risk serious health impacts, including thousands of fatalities.
  • Whether or not New Zealand reaches a theoretical population immunity threshold, the higher vaccination coverage is, the more collective protection the population has against adverse health outcomes from COVID-19, and the easier it will become to control outbreaks.
  • Reaching or getting as close as possible to the population immunity threshold is very likely to require vaccinating at least some under-16-year-olds, subject to official approval for the vaccine to be used in these age groups.
  • There remains considerable uncertainty in model outputs, in part because of the potential for the evolution of new variants. If new variants arise that are more transmissible or vaccine resistant, an increase in vaccine coverage will be needed to provide the same level of protection.
  • A second important source of uncertainty arises because not all parts of the population will have equal vaccine coverage. Even if population immunity is achieved at a national level, communities with relatively low vaccine coverage or high contact rates will remain vulnerable to major outbreaks. These thresholds may also vary seasonally.
  • Until the vaccine rollout is complete, retaining the elimination strategy will protect people who have not yet been vaccinated and, by keeping cases to a minimum, decrease the likelihood that the alert level system will be needed to control future outbreaks.

Abstract

We present two implementations of an age-structured model for COVID-19 spread in Aotearoa New Zealand with a partially vaccinated population. The first is a deterministic SEIR model, useful for considering population-level dynamics and questions about population immunity. The second is a stochastic branching process, useful for considering smaller community outbreaks seeded by individual border arrivals. This builds on an earlier model used to inform the response to outbreaks of COVID-19 in New Zealand. The main purpose of this paper is to develop a model that can be used as the basis for policy advice on border restrictions and control measures in response to outbreaks that may occur during the vaccination roll-out. We consider a range of scenarios at different stages in the vaccine roll-out, including an unmitigated epidemic and contained local outbreaks. This work is intended to form a foundation for further COVID-19 vaccination modelling in New Zealand that will account for additional demographic variables.

 


Supplementary information [PDF 2.1MB]

*This paper was updated on 21 September 2021 with an erratum correcting a mistake in the previous version.

PhD scholarship on feedback between humans, living things and artificial intelligence

Applications are invited for a fully funded PhD scholarship to explore feedback between humans, living things and artificial intelligence (AI).

Researchers are increasingly seeking to solve complex problems using computer generated predictions. These predictions are often applied to living things such as crops for productivity, or pests or diseases for their management. However, we rarely consider how living things will further adjust in response to the changes caused in their environment by the application of the outputs from the AI. This project will develop tools to explore how management methods based on artificial intelligence can lead to unexpected consequences when applied to living things.

You will tackle these problems by integrating diverse sources of information. This could include quantitative methods, mathematical modelling, fieldwork and interviews with end users.

Eligibility

This scholarship is only open to current residents of New Zealand and Australia. We are happy to consider students from a diverse range of fields. At a minimum, some university level of mathematics familiarity with scientific computation is expected. An interest in ecology will be an advantage for this project, but no prior knowledge is required. The successful candidate will hold, or expect to complete soon, a masters degree, or similar, in a relevant discipline.

Applicants from all backgrounds are actively encouraged to apply. Members of underrepresented groups are very welcome, as are students with families. Our research group aims to achieve work-life balance within a productive scientific environment.

Location

The best place for you to be based during your studies is Lincoln University (near Christchurch), New Zealand, although we can be flexible on this. You will be jointly supervised by William Godsoe (Lincoln, Bioprotection Research Centre), Claire Postlethwaite (Auckland, Mathematics) and Emma Sharp (Auckland, School of Environment).

You will be part of Te Pūnaha Matatini, the Aotearoa New Zealand Centre of Research Excellence for Complex Systems. Te Pūnaha Matatini brings together different disciplines, ways of thought, methods, and people to define and solve society’s thorny interconnected problems.

Contact

Informal enquiries are welcome by email:

Financial details

  • Full tuition fees
  • Stipend of NZ$28,500 per year (tax free)

Start date

Start date is flexible but would preferably be between August 2021 and March 2022.

How to apply

Send an email expressing your interest, along with a CV, academic record, and list of three potential referees to William Godsoe at william.godsoe@lincoln.ac.nz.

Due date

Applications will be considered until the position is filled. Applications received by 30 July 2021 will receive full consideration.

Dr Andrea Byrom honoured to accept new role as kairangi

Dr Andrea Byrom honoured to accept new role as kairangi

Ecologist and science leader Dr Andrea Byrom has accepted a role as kairangi in Te Pūnaha Matatini.

Kairangi is a Māori word meaning ‘the finest pounamu’, which can be used to describe a person held in high esteem. This role acknowledges the important contributions of our senior colleagues.

Dr Andrea Byrom has been involved with Te Pūnaha Matatini as an associate investigator since the early days, and has contributed at many hui and supervised several early career researchers. She is currently co-supervising Te Pūnaha Matatini Whānau member Julie Mugford in the final stages of her thesis, alongside Associate Professor Alex James and Professor Michael Plank.

The project that Andrea is most proud of being involved with at Te Pūnaha Matatini was exploring the biodiversity benefits of large-scale pest control regimes with Dr Rachelle Binny. Their work quantified significant benefits for biodiversity from pest control over two decades. Andrea says that “I’m proud to have contributed to that research because it really demonstrated how important science is to the environment, and why we do large-scale conservation efforts like pest control or ecological restoration.”

She also particularly enjoyed collaborating with Professor Shaun Hendy and a group of summer interns on network analyses of the many types of people and organisations involved in environmental protection in Aotearoa. “That was a real introduction to network analyses and some of the things Te Pūnaha Matatini had to offer that I had not previously thought of applying to te taiao the environment.”

Andrea recently resigned from her role as director of Ngā Koiora Tuku Iho New Zealand’s Biological Heritage National Science Challenge. She has been working in the New Zealand science system since joining Manaaki Whenua Landcare Research as a postdoctoral researcher in 1997.

Over two decades working at Manaaki Whenua Andrea moved away from directly doing her own research and into leadership roles, after becoming interested in how science leadership could empower scientists to do their work, rather than add more bureaucracy to their lives.

She says that she “really loved that leadership style”.

“What I liked most about being a director of a National Science Challenge was having a view across all of the amazing talent that we have in the New Zealand science system.”

Her directorial responsibilities meant that Andrea did not have as much time as she would like to devote to Te Pūnaha Matatini in recent years. “I’ve been on a separate journey from Te Pūnaha Matatini for the last wee while, so to come back in as a kairangi now is quite an honour.”

“In the last few years, my interests have broadened to thinking about how we take our Te Tiriti o Waitangi partnership role seriously as scientists, and how we bring mātauranga Māori and kaupapa Māori research methods to the fore. I worked hard to facilitate a lot of that via the National Science Challenge and ended up in a co-director role in that area with Melanie Mark-Shadbolt.”

“I feel like the tide’s turning and that people are starting to listen. But it’s really important to put different perspectives and stories out there.”

After a demanding period as a director, Andrea is focusing on spending more time with her partner, as well as doing environment consultancy work and board roles. “I’m particularly interested in how important governance is to science and the environment. That’s my new passion, and as a kairangi I would like to contribute where I can – particularly around complex environmental research.”

“I love being a sounding board for students and I love coming to hui where there are great minds contributing things that I hadn’t thought of and ideas that I’m interested in.”

Since stepping back as a director, Andrea and her partner have been making the most of their time together by killing of a large amount of lawn on their half-hectare property in mid-Canterbury and replanting it with over 5,000 native plants.

How to kill your lawn with Andrea Byrom

  1. Acquire large quantities of cardboard boxes and flatten them
  2. Lay cardboard over lawn on non-windy day
  3. Cover cardboard with a whole lot of mulch
  4. Water it all down
  5. Leave for two months
  6. Replant with native plants

Links

Long-term biodiversity trajectories for pest-managed ecological restorations: eradication vs. suppression – Ecological Monographs

Fighting COVID-19 with the team of 5 million

Aotearoa New Zealand government communication during the 2020 lockdown

25 May 2021

This paper is under review and is currently available through First Look on SSRN to provide early access prior to publication.

Aotearoa New Zealand’s response to the COVID-19 pandemic is considered one of the best in the world. A major component of the response was the communication of public health measures. A reflexive thematic analysis of Prime Minister Jacinda Ardern’s addresses to the nation and her daily press briefings with the Director-General of Health, Ashley Bloomfield, led us to identify three key themes:

  1. Open, honest and straightforward communication
  2. Distinctive and motivational language
  3. Expressions of care

We argue that the messages presented in the daily briefings supported the New Zealand Government’s COVID-19 elimination strategy through building trust with the audience and framing the ‘lockdown’ as an urgent, collective and meaningful cause, mobilising New Zealanders to support public health measures.

 

Prime Minister recognises transformative science

Prime Minister recognises transformative science

The 2020 Prime Minister’s Science Prize has been awarded to Te Pūnaha Matatini for our contribution to Aotearoa New Zealand’s COVID-19 response.

The Prime Minister’s Science Prize is awarded for transformative science which has had a significant economic, health, social or environmental impact.

Te Pūnaha Matatini are being recognised for our work that developed a series of mathematical models, analysed data and communicated the results to inform the New Zealand Government’s world-leading response to the global pandemic.

Te Pūnaha Matatini is a Centre of Research Excellence funded by the Tertiary Education Commission and hosted by the University of Auckland. Over the past six years, Te Pūnaha Matatini has grown from the kernel of an idea into a diverse national network of over a hundred investigators and students who are tackling the interconnected and deeply interdisciplinary challenges of our time. Our values, expertise and focus on communication made us uniquely positioned to grapple with the COVID-19 pandemic in Aotearoa New Zealand.

Te Pūnaha Matatini’s modelling was key in helping the government make good decisions about lockdowns, particularly in April and May when the need to relax Alert Levels arrived, and in August, when a tailored lockdown was used in Auckland to eliminate a large outbreak. These public health interventions have had an immense impact on New Zealanders’ lives, not the least of which was preventing a considerable number of deaths due to COVID-19 if the virus had been allowed to spread unimpeded.

“Even I underestimated the centrality of [science] advice for me, in this time in office, and just how important it would become to us as a government.” – Jacinda Ardern, Prime Minister of New Zealand

The team made sure their models served the health system by working with Orion Health data scientists to ensure information got to where it was needed. Orion Health works with healthcare sector clients to deploy and manage machine learning models, which meant they were able to offer their technology and processes to support the Te Pūnaha Matatini team.

Te Pūnaha Matatini’s work and related research from around the globe was actively communicated to the public throughout 2020, and several of Te Pūnaha Matatini’s researchers were the most prominent science communicators during the crisis.

“I want to thank the many, many, many people in this room who were a part in your own ways in either helping us generate the information we needed to make those decisions, or who helped us communicate those decisions when it mattered most.” – Jacinda Ardern, Prime Minister of New Zealand

The transdisciplinary team working on COVID-19 that received this award brought together researchers from the University of Auckland, University of Canterbury, Victoria University of Wellington, Manaaki Whenua Landcare Research, Market Economics, and Orion Health.

The COVID-19 programme at Te Pūnaha Matatini continues into 2021 with projects focusing on branching process models, complex network models, phylodynamics, and the spread of disinformation and misinformation.

Vaccination and testing of the border workforce for COVID-19 and risk of community outbreaks

A modelling study

22 March 2021

Executive summary

  • Vaccination of New Zealand’s frontline border workforce is a priority in order to protect this high-exposure group from the health impacts of COVID-19.
  • Although vaccines are highly effective in preventing disease, their effectiveness in preventing transmission of COVID-19 is less certain.
  • There is a danger that vaccination could prevent or reduce symptoms of COVID-19 but not prevent transmission. Counterintuitively, this means that vaccinating frontline border workers could increase the risk of a community outbreak.
  • In a scenario where the vaccine reduces transmission by 50%, vaccinating border workers could increase the risk of a significant community outbreak from around 7% per seed case to around 9% per seed case.
  • Until more is known about the effect of the vaccine on transmission, we recommend increasing the routine testing of vaccinated border workers to mitigate this risk. Regular saliva testing may be a good way to achieve this.
  • Careful attention should be paid to any groups, such as frontline workers’ family members, who may be vaccinated but who are not undergoing routine testing to ensure they do not become asymptomatic spreaders.

Abstract

Australia and New Zealand have a strategy to eliminate community transmission of COVID-19 and require overseas arrivals to quarantine in government-managed facilities at the border. In both countries, community outbreaks of COVID-19 have been sparked following infection of a border worker. This workforce is rightly being prioritised for vaccination. However, although vaccines are highly effective in preventing disease, their effectiveness in preventing transmission of COVID-19 is less certain. There is a danger that vaccination could prevent symptoms of COVID-19 but not prevent transmission. Here, we use a stochastic model of COVID-19 transmission and testing to investigate the effect that vaccination of border workers has on the risk of an outbreak in an unvaccinated community. We simulate the model starting with a single infected border worker and measure the number of people who are infected before the first case is detected by testing. We show that if a vaccine reduces transmission by 50%, vaccination of border workers increases the risk of a major outbreak from around 7% per seed case to around 9% per seed case. The lower the vaccine effectiveness against transmission, the higher the risk. The increase in risk as a result of vaccination can be mitigated by increasing the frequency of routine testing for high-exposure vaccinated groups.

 

Estimated inequities in Covid-19 infection fatality rates by ethnicity for Aotearoa New Zealand

4 September 2020

There is limited evidence as to how clinical outcomes of COVID-19 including fatality rates may vary by ethnicity. We aim to estimate inequities in infection fatality rates (IFR) in New Zealand by ethnicity. We combine existing demographic and health data for ethnic groups in New Zealand with international data on COVID-19 IFR for different age groups. We adjust age-specific IFRs for differences in unmet healthcare need, and comorbidities by ethnicity. We also adjust for life expectancy reflecting evidence that COVID-19 amplifies the existing mortality risk of different groups.

The IFR for Māori is estimated to be 50% higher than that of non-Māori, and could be even higher depending on the relative contributions of age and underlying health conditions to mortality risk. There are likely to be significant inequities in the health burden from COVID-19 in New Zealand by ethnicity. These will be exacerbated by racism within the healthcare system and other inequities not reflected in official data. Highest risk communities include those with elderly populations, and Māori and Pacific communities. These factors should be included in future disease incidence and impact modelling.