We recently caught up with Principal Investigator Dr Michael Plank, a senior lecturer in the School of Mathematics and Statistics at the University of Canterbury. Mike has taken on the role of Theme Leader: Complexity and the Biosphere while Alex James is on hiatus. As a research theme leader, Mike will be steering Te Pūnaha Matatini’s research projects that build a better understanding of New Zealand’s environment and the interactions between biodiversity, the economy, and human decision-making.

Tell us about your research, including projects aligned with Te Pūnaha Matatini

My research is in biological modelling and ranges from the very small (intracellular dynamics) to the very large (marine ecosystems). A common theme in my research is investigating how collective phenomena emerge from interactions among individuals, whether on the scale of single human cell, or the scale of an ocean. I am interested in the insights that relatively simple mathematical models can give into the ways these complex systems function – and why they sometimes go wrong.

One of my projects aligned with Te Pūnaha Matatini is modelling the emergent behaviour of fishers stemming from their decisions about which species or sizes of fish to target. Principles from ecology suggest that natural predators tend to spread their effort according to the productivity of their prey. So why shouldn’t humans behave like natural predators and spread their fishing efforts according to the productivity of the fish? If this really happens, it could change the way we design fishing regulations from top-down control to a bottom-up approach that recognises the effect of the fish stock on the behaviour of fishers as well as the other way round.

What attracted you to the  role of Theme Leader: Complexity and the Biosphere?

We have some really exciting projects going on in the Biosphere theme. I’m really looking forward to a new project that will look at the interplay of ecological dynamics, geospatial data, and social attitudes to map the effectiveness of large-scale predator control. Other projects include investigating the effects of social contact networks on epidemic spread, and harnessing the huge potential of citizen science to enhance conservation projects.

We have some amazing scientists and students involved with these projects and I’m excited to work with them and see how we can turn the scientific results into real impacts for New Zealand’s unique ecosystems.

How can research using complex systems, networks, and data assist New Zealand’s environment?

New Zealand is facing a range of pressing environmental issues, including loss of our endemic native flora and fauna, agricultural pest invasions, and management of our fisheries. We have a large amount of data relating to these, for example the Department of Conservation’s tier 1 monitoring programme, and catch data from our Quota Management System. At the same time, we’re investing substantial money and resources into these areas, but we’re not always making full use of the data that are available. Te Pūnaha Matatini’s research programme has the potential to really add value to our conservation dollar by helping us target our resources to areas where they will have the most impact.

Taking a complex systems and network approach also gives us opportunities to look at environmental issues at a larger spatial scale, rather than focusing on projects in isolation. As a simple example, a predator control programme in an area of Department of Conservation land might reduce or even eliminate the possum population in the short-term. But if there is adjacent, privately owned land without any control, the possums are likely to re-invade in the long-term. Viewing the whole country as an interconnected network gives us a better ability to predict long-term outcomes, and therefore a better chance of eliminating possums for good.