10 November 2021

We use a stochastic branching process model to investigate the risk of border-related outbreaks of COVID-19 and strategies to mitigate this risk.

In this paper we couple a simple model of quarantine and testing strategies for international travellers with a model for transmission of SARS-CoV-2 in a partly vaccinated population. We use this model to estimate the risk of an infectious traveller causing a community outbreak under various border control strategies and different levels of vaccine coverage in the population.

We find that strategies that rely on home isolation result in significantly higher risk than the current mandatory 14-day stay in government-managed isolation. Nevertheless, combinations of testing and home isolation can still reduce the risk of a community outbreak to around one outbreak per 100 infected travellers. We also find that, under some circumstances, using daily lateral flow tests or a combination of lateral flow tests and polymerase chain reaction (PCR) tests can reduce risk to a comparable or lower level than using PCR tests alone.

Combined with controls on the number of travellers from countries with high prevalence of COVID-19, our results allow different options for managing the risk of COVID-19 at the border to be compared. This can be used to inform strategies for relaxing border controls in a phased way, while limiting the risk of community outbreaks as vaccine coverage increases.